Soft Biometric Recognition from Comparative Crowdsourced Annotations

نویسندگان

  • Daniel Martinho-Corbishley
  • Mark S. Nixon
چکیده

Soft biometrics provide cues that enable human identification from low quality video surveillance footage. This paper discusses a new crowdsourced dataset, collecting comparative soft biometric annotations from a rich set of human annotators. We now include gender as a comparative trait, and find comparative labels are more objective and obtain more accurate measurements than previous categorical labels. Using our pragmatic dataset, we perform semantic recognition by inferring relative biometric signatures. This demonstrates a practical scenario, reproducing responses from a video surveillance operator searching for an individual. The experiment is guaranteed to return the correct match in the the top 7% of results with 10 comparisons, or top 13% of results using just 5 sets of subject comparisons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysing comparative soft biometrics from crowdsourced annotations

Soft biometrics enable human description and identification from low quality surveillance footage. This paper premises the design, collection and analysis of a novel crowdsourced dataset of comparative soft biometric body annotations, obtained from a richly diverse set of human annotators. We annotate 100 subject images to provide a coherent, in-depth appraisal of the collected annotations and ...

متن کامل

Robust Online Gesture Recognition with Crowdsourced Annotations

Crowdsourcing is a promising way to reduce the effort of collecting annotations for training gesture recognition systems. Crowdsourced annotations suffer from ”noise” such as mislabeling, or inaccurate identification of start and end time of gesture instances. In this paper we present SegmentedLCSS and WarpingLCSS, two template-matching methods offering robustness when trained with noisy crowds...

متن کامل

A Preliminary Study of a New Soft Biometric: Finger Recognition for Keystroke Dynamics

Keystroke dynamics is an interesting biometric modality as a user can be authenticated while typing a passphrase or a password on a keyboard. In order to improve the accuracy of biometric systems, it is possible to exploit some prior information that can be known or extracted from the biometric raw data. This process is known as ”soft biometrics”. In this paper, we propose a new soft biometric ...

متن کامل

Integrating Faces, Fingerprints, and Soft Biometric Traits for User Recognition

Soft biometric traits like gender, age, height, weight, ethnicity, and eye color cannot provide reliable user recognition because they are not distinctive and permanent. However, such ancillary information can complement the identity information provided by the primary biometric traits (face, fingerprint, hand-geometry, iris, etc.). This paper describes a hybrid biometric system that uses face ...

متن کامل

Exploring soft biometric trait with finger vein recognition

Soft biometric trait has been used as ancillary information to enhance the recognition accuracy for face, fingerprint, gait, iris, etc. In this paper, we present a new investigation of soft biometric trait to improve the performance of finger vein recognition. We first propose some extraction criteria of soft biometric trait for comprehensively understanding this kind of ancillary information. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015